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Before proving the Schauder estimates, we want to prove the following abstract lemma:

Lemma 1 (Simple Abstract Lemma). Let BR(x0) be any ball in Rn, k ∈ R, θ ∈ (0, 1), γ ∈ (0,∞),
and ν ∈ (0, 1]. Let S be a nonnegative function on the class of convex open subsets of BR(x0) and
suppose that S is subadditive, i.e. given a finite collection of convex subsets A,A1, A2, . . . , AN of
BR(x0),

S(A) ≤
N∑
j=1

S(Aj) whenever A ⊆
N⋃
j=1

Aj.

Then there is an δ = δ(n, k, θ) such that if

ρkS(Bθρ(y)) ≤ δρkS(Bρ(y)) + γ (1)

whenever Bρ(y) ⊆ BR(x0) and ρ ≤ νR, then

RkS(BθR(x0)) ≤ Cγ

for some constant C = C(n, k, θ, ν).

We will use the Simple Abstract Lemma in the special case S be a seminorm of a solution to
an elliptic equation as a trick for obtaining estimates. For instance, in the proof of the Schauder
estimates, we will let S(A) = [D2u]µ;A for all convex open sets A in BR(x). We will then obtain

R2+µ[D2u]µ;BR/2(y) ≤ δR2+µ[D2u]µ;BR(y) + C

(
sup
BR(x0)

|u|+ ‖f‖′C0,µ(BR(x0))

)

for a constant C ∈ (0,∞). One might regard this as a bad estimate because we are bounding
[D2u]µ;Bθρ(y) in terms of precisely the thing we want to bound, Hölder coefficients of D2u, and on
larger balls no less. However, the Simple Abstract Lemma allows us to absorb the [D2u]µ;Bρ(y)

term into the left-hand side to conclude that

R2+µ[D2u]µ;BR/2(y) ≤ C

(
sup
BR(x0)

|u|+ ‖f‖′C0,µ(BR(x0))

)

for a constant C ∈ (0,∞) as desired.
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Proof of the Simple Abstract Lemma. Let

Q = sup
Bρ(y)⊂BR(x),ρ≤νR

ρkS(Bθρ(y)).

By (1),
(θρ)kS(Bθ2ρ(y)) ≤ δQ+ γ (2)

whenever Bρ(y) ⊂ BR(x) with ρ ≤ νR. Take an arbitrary ball Bρ(y) ⊂ BR(x) with ρ ≤ νR and
cover Bθρ(y) by a finite collection of smaller open balls Bθ2(1−θ)ρ(zj), j = 1, . . . , N , with zj ∈ Bθρ(y)
and N ≤ C for some constant C = C(n, θ) ∈ (0,∞). Since B(1−θ)ρ(zj) ⊂ BR(x), we can replace
Bρ(y) with B(1−θ)(zj) in (2) and sum over j to obtain

ρkS(Bθρ(y)) ≤
N∑
j=1

ρkS(Bθ2(1−θ)ρ(zj)) (by subadditivity of S)

≤ N(θ(1− θ)ρ)−k(δQ+ γ) (by (2))

≤ C(δQ+ γ)

for some constant C = C(n, k, θ) ∈ (0,∞). Since Bρ(y) is arbitrary,

Q ≤ C(δQ+ γ). (3)

Choosing δ such that Cδ < 1/2 in (3), we obtain

Q ≤ 2Cγ;

that is,
ρkS(Bθρ(y)) ≤ 2Cγ (4)

whenever Bρ(y) ⊂ BR(x) with ρ ≤ νR.
Now without the restriction ρ ≤ νR (i.e. the case where ν = 1) we would be done as would

could simply choose Bρ(y) = BR(x). We cover BθR(x) by a finite collection {BθνR(yj)}j=1,...,N ′ of
open balls such that BνR(yj) ⊂ BR(x) and N ′ ≤ C for some constant C = C(n, θ, ν) ∈ (0,∞).
By replacing Bρ(y) with BνR(yj) in (4) and summing over j using the subadditivity of S,

RkS(BθR(x)) ≤
N∑
j=1

RkS(BθνR(yj)) ≤ Cγ

for C = C(n, k, θ, ν) ∈ (0,∞).

Now we want to prove the following interior Schauder estimate.

Lemma 2. Let µ ∈ (0, 1). Consider a ball BR(x0) in Rn. Suppose u ∈ C2,µ(BR(x0)) solves the
elliptic equation

aijDiju+ biDiu+ cu = f in BR(x0), (5)

where aij, bi, c : C0,µ(BR(x0)) are coefficients and f ∈ C0,µ(BR(x0)). Assume the coefficients
satisfy the bounds

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for x ∈ BR(x0), ξ ∈ Rn,
n∑

i,j=1

‖aij‖′C0,µ(BR(x0)) +
n∑
i=1

R‖bi‖′C0,µ(BR(x0)) +R2‖c‖′C0,µ(BR(x0)) ≤ β,

2



for some constants λ,Λ, β ∈ (0,∞) such that 0 < λ ≤ Λ and f ∈ C0,µ(BR(x0)). Then

|u|′2,µ;BR/2(x0) ≤ C
(
|u|0;BR(x0) +R2|f |′0,µ;BR(x0)

)
(6)

for some constant C = C(n, µ, λ,Λ, β) ∈ (0,∞).

What the Schauder estimate roughly states is that the C2,µ norm of u is bounded in terms of
the supremum of u and norm of f . This is what one would expect. Consider for instance that for
a solution u to an elliptic equation on an interval in R, we can explicitly express u in terms of its
values at the boundary of the interval and f .

Remarks:

(1) We need 0 < µ < 1. The Schauder estimate is not true in general with µ = 1. This basically
follows from the fact that there exists an f ∈ C0,1(B1(0)) and a solution u ∈ C2(B1(0)) to
∆u = f inB1(0) such that u 6∈ C2,1 in any neighborhood of the origin (see the example sheet).
Now if there were a C2,1 Schauder estimate, then we could use convolution to approximate u
and f by smooth functions uk and fk such that ∆uk = fk in B1(0) and uk → u in C2(B1(0))
and fk → f uniformly on compact subsets of B1(0) and the C2,1 Schauder estimate and
Arzela-Ascoli would imply that u ∈ C2,1(B1(0))! The idea here is that we will later use
the Schauder estimates to build up a theory for compactness, existence, and regularity of
solutions to elliptic equations and since the C2,1 regularity theory fails then there cannot be
a C2,1 Schauder estimate.

Similarly, there exists f ∈ C0(B1(0)) and a solution u ∈ C2(B1(0)\{0}) to ∆u = f in B1(0)
such that u 6∈ C2 in any neighborhood of the origin and thus it is generally false that we
have a C2 Schauder estimate of the form

|u|′2;BR/2(x0) ≤ C
(
|u|0;BR(x0) +R2|f |′0;BR(x0)

)
.

(2) The Schauder estimate bounds the C2,µ norm of u on a smaller ball in terms of norms on a
larger ball. It is generally false that

|u|′2,µ;BR(x0) ≤ C
(
|u|0;BR(x0) +R2|f |′0,µ;BR(x0)

)
; (7)

for example, if u(x1 + ix2) = Re((x1 + ix2)k) for (x1, x2) ∈ B1(0) and a large integer k ≥ 2,
then u is harmonic and it is easy to check that

sup
B1(0)

|u| = 1, sup
B1(0)

|D2u| =
√

2k2, sup
B1/2(0)

|D2u| =
√

2k2(1/2)k,

so that (7) is clearly false but (6) holds true.

(3) The Schauder estimate is invariant under scaling, i.e. transformation of x 7→ y + ρx for
y ∈ Rn and ρ > 0. This is an important quality to have in an estimate, as we can always
rescale a solution to an elliptic equation to find another solution to another elliptic equation
and thus our estimates should be invariant, or at least well behaved, under scaling. To see
this scale invariance, let ũ(x) = u(x0 +Rx). It is easy to check that

ũ(x) = u(x0 +Rx), Dũ(x) = RDu(x0 +Rx), D2ũ(x) = R2D2u(x0 +Rx). (8)
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Hence it follows that ũ satisfies

aij(x0 +Rx)Dijũ(x) +Rbi(x0 +Rx)Diũ(x) +R2c(x0 +Rx)ũ(x) = R2f(x0 +Rx). (9)

Let f̃(x) = R2f(x0 +Rx). Observe that by (8)

[D2ũ]µ;B1(0) = inf
x 6=y∈B1(0)

|R2D2u(x0 +Rx)−R2D2u(x0 +Ry)|
|x− y|µ

= inf
x 6=y∈B1(0)

|R2D2u(x0 +Rx)−R2D2u(x0 +Ry)|
|(x0 +Rx)− (x0 +Ry)|µ

·Rµ

= R2+µ[D2u]µ;BR(x0),

so by (8)
|ũ|2,µ;B1(0) = |u|′2,µ;BR(x0) (10)

and similarly

|aij(x0 +Rx)|0,µ;B1(0) = |aij|′0,µ;BR(x0), |Rbi(x0 +Rx)|0,µ;B1(0) = R|bi|′0,µ;BR(x0),

|R2c(x0 +Rx)|0,µ;B1(0) = R2|c|′0,µ;BR(x0), |f̃ |0,µ;B1(0) = R2|f |′0,µ;BR(x0). (11)

By (9), (10), and (11), (6) is equivalent to

|ũ|2,µ;B1/2(0) ≤ C
(
|ũ|0;B1(0) + |f̃ |0,µ;B1(0)

)
.

Now let’s prove the Schauder estimate. We will do this by a contradiction argument involving
scaling. This argument has several steps.

Step 1: First we claim that to prove (6), it suffices to prove under the hypotheses of the Schauder
lemma that for every constant δ > 0 there is a constant C = C(δ, n, µ, λ,Λ) ∈ (0,∞)

R2+µ[D2u]µ;BR/2(x0) ≤ δR2+µ[D2u]µ;BR(x0) + C
(
|u|′2;BR(x0) +R2|f |′0,µ;BR(x0)

)
. (12)

Suppose that we knew (12) held true. Then by interpolation, for every ε > 0,

|u|′2;BR(x0) ≤ ε[D2u]2,µ;BR(x0) + C(n, µ, ε)|u|0;BR(x0),

so by taking ε = δ/C for C in (12), (12) implies that

R2+µ[D2u]µ;BR/2(x0) ≤ 2δR2+µ[D2u]µ;BR(x0) + C
(
|u|0;BR(x0) +R2|f |′0,µ;BR(x0)

)
(13)

for some constant C = C(δ, n, µ, λ,Λ) ∈ (0,∞). Note that (13) will hold if we replace BR(x0)
with any ball contained in BR(x0), so by the Simple Abstract Lemma, upon choosing δ(n) > 0,

R2+µ[D2u]µ;BR/2(x0) ≤ C
(
|u|0;BR(x0) +R2|f |′0,µ;BR(x0)

)
(14)

for some constant C = C(n, µ, λ,Λ) ∈ (0,∞) as required. By interpolation

|u|2,µ;BR/2(x0) ≤ |u|0;BR/2(x0) + C(n, µ)R2+µ[D2u]µ;BR/2(x0))
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for some constant C = C(n, µ, λ,Λ) ∈ (0,∞), so (14) implies

|u|2,µ;BR/2(x0) ≤ C
(
|u|0;BR(x0) +R2|f |′0,µ;BR(x0)

)
for some constant C = C(n, µ, λ,Λ) ∈ (0,∞).

By translating and rescaling, we can assume without loss of generality that x0 = 0 and R = 1
so that in place of (12) we want to prove that for every constant δ > 0 there is a constant
C = C(δ, n, µ, λ,Λ) ∈ (0,∞)

[D2u]µ;B1/2(0) ≤ δ[D2u]µ;B1(0) + C(|u|2;B1(0) + |f |0,µ;B1(0)). (15)

Step 2: We shall prove (15) by contradiction. Suppose that for some sequence of uk ∈ C2(B1(0))
and aijk , fk ∈ C2(B1(0)),

aijkDijuk + bikDiuk + cuk = fk in B1(0), (16)

and

λ|ξ|2 ≤ aijk (x)ξiξj ≤ Λ|ξ|2 for x ∈ B1(0), ξ ∈ Rn, (17)
n∑

i,j=1

‖aijk ‖C0,µ(B1(0)) +
n∑
i=1

‖bik‖C0,µ(B1(0)) + ‖ck‖C0,µ(B1(0)) ≤ β, (18)

where λ,Λ, β ∈ (0,∞) are fixed constants, but for some fixed δ > 0,

[D2uk]µ;B1/2(0) > δ[D2uk]µ;B1(0) + k
(
|uk|2;B1(0) + |f |0,µ;B1(0)

)
. (19)

Select distinct xk, yk ∈ B1/2(0) such that

|D2uk(xk)−D2uk(yk)|
|xk − yk|µ

>
1

2
[D2uk]µ;B1/2(0) (20)

and let ρk = |xk − yk|. Observe that

1

2
[D2uk]µ;B1/2(0) <

|D2uk(xk)−D2uk(yk)|
|xk − yk|µ

by (20)

≤
2|D2u|0;B1(0)

ρµk

≤ 2

kρµk
[D2uk]µ;B1/2(0) by (19),

so ρµk ≤ 4/k and thus ρk → 0 as k →∞.

Step 3: Now we are going to rescale and “blow-up”. Define

ũk(x) =
uk(xk + ρkx)− uk(xk)− ρk

∑n
i=1Diuk(xk)xi − (1/2)ρ2

k

∑n
i,j=1Dijuk(xk)xixj

ρ2+µ
k [D2uk]µ;B1(0)

,

ãijk (x) = aijk (xk + ρkx), b̃ik(x) = ρkb
i
k(xk + ρkx), c̃k(x) = ρ2

kck(xk + ρkx),

f̃k(x) =
fk(xk + ρkx)− fk(xk)

ρµk [D2uk]µ;B1(0)

,

ξk =
yk − xk
ρk

.
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Clearly ũk(0) = 0, Dũk(0) = 0, D2ũk(0) = 0, [D2ũk]B1/2ρk
(0) ≤ 1, and |ξk| = 1. By (19) and (20),

|D2ũk(ξk)−D2ũk(0)| > δ

2
. (21)

Now we want to let k → ∞. By Bolzano-Weierstrass, after passing to a subsequence, ξk
converges to some ξ with |ξ| = 1. We know that [D2ũk]µ;B1/2ρk

(0) ≤ 1.

Since D2ũk(0) = 0,

|D2ũk(x)| = |D2ũk(x)−D2ũk(0)| ≤ 1 · |x|µ ≤ σµ

for all x ∈ Bσ(0) and σ ∈ (0,∞) provided k sufficiently large (how large k has to be off course
depends on σ) and similarly

|ũk(x)| ≤ σ2+µ, |Dũk(x)| ≤ σ1+µ,

for all x ∈ Bσ(0) and σ ∈ (0,∞) provided k sufficiently large. Therefore by Arzela-Ascoli, ũk
converges to some function ũ in C2 on compact subsets of Rn. Note that again by the properties
of ũk, in particular (21),

[D2ũ]µ;Rn ≤ 1, |D2ũ(ξ)−D2ũ(0)| ≥ δ/2. (22)

By (18),

sup
B1/2ρk

(0)

|ãijk | ≤ sup
B1(0)

|aijk | ≤ β,

[ãijk ]µ;Bσ(0) = sup
x 6=y∈Bσ(0)

|aijk (xk + ρkx)− aijk (xk + ρky)|
|x− y|µ

≤ ρµk [aijk ]µ;B1(0),

so by Arzela-Ascoli, ãijk converges to some function ãij uniformly on compact subsets of Rn.
Moreover, [ãij]µ;Rn = 0, so ãij is in fact constant. By (18),

λ|ξ|2 ≤ ãijξiξj ≤ Λ|ξ|2 for ξ ∈ Rn.

By (18),

sup
B1/2ρk

(0)

|̃bik| ≤ ρk sup
B1(0)

|bik| ≤ βρk,

sup
B1/2ρk

(0)

|c̃ik| ≤ ρ2
k sup
B1(0)

|ck| ≤ βρ2
k,

so b̃ik → 0 and c̃k → 0 uniformly on compact subsets of Rn.
By (19),

sup
Bσ(0)

|f̃ | = sup
Bσ(0)

|fk(xk + ρkx)− fk(xk)|
ρµk [D2uk]µ;B1(0)

≤
[fk]µ;B1(0)(ρkσ)µ

ρµk [D2uk]µ;B1(0)

≤ σµ

k
,
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so f̃k → 0 uniformly on compact subsets of Rn.
Now we want to show that ũk satisfies an elliptic equation. By rescaling (16) by x 7→ xk + ρkx

and dividing by ρ2+µ
k [D2uk]µ;B1/2(0),

ãijkDijũk + b̃ikDiũk + c̃ũk

=
aijk (xk + ρkx)Dijuk(xk + ρkx) + bik(xk + ρkx)Diuk(xk + ρkx) + ck(xk + ρkx)uk(xk + ρkx)

ρµk [D2uk]µ;B1(0)

− aijk (xk + ρkx)Diju(xk) + bik(xk + ρkx)Diu(xk) + ρkb
i
k(xk + ρkx)Diju(xk)xj

ρµk [D2uk]µ;B1(0)

− ck(xk + ρkx)u(xk) + ρkck(xk + ρkx)Diu(xk)xi + (1/2)ρ2
kck(xk + ρkx)Diju(xk)xixj

ρµk [D2uk]µ;B1(0)

=
fk(xk + ρkx)− fk(xk)

ρµk [D2uk]µ;B1(0)

− (aijk (xk + ρkx)− aijk (xk))Diju(xk)

ρµk [D2uk]µ;B1(0)

− (bik(xk + ρkx)− bik(xk))Diu(xk) + (ck(xk + ρkx)− ck(xk))uk(xk)
ρµk [D2uk]µ;B1(0)

− ρkb
i
k(xk + ρkx)Diju(xk)xj + ρkck(xk + ρkx)Diu(xk)xi + (1/2)ρ2

kck(xk + ρkx)Diju(xk)xixj
ρµk [D2uk]µ;B1(0)

in B1/2ρk(0), hence ∣∣∣ãijkDijũk + b̃ikDiũk + c̃kũk − f̃k
∣∣∣ ≤ C(n, σ)

β

k
(23)

on Bσ(0) for all σ ∈ (0,∞) and k sufficiently large. (Note that it might be helpful to consider this
computation in the special case that bi = 0 and c = 0 on B1(0). We then compute

ãijkDijũk =
aijk (xk + ρkx)Dijuk(xk + ρkx)− aijk (xk + ρkx)Diju(xk)

ρµk [D2uk]µ;B1(0)

=
aijk (xk + ρkx)Dijuk(xk + ρkx)− aijk (xk)Diju(xk)− (aijk (xk + ρkx)− aijk (xk))Diju(xk)

ρµk [D2uk]µ;B1(0)

=
fk(xk + ρkx)− fk(xk)

ρµk [D2uk]µ;B1(0)

− (aijk (xk + ρkx)− aijk (xk))Diju(xk)

ρµk [D2uk]µ;B1(0)

in B1/2ρk(0), where

|aijk (xk + ρkx)− aijk (xk)||Diju(xk)|
ρµk [D2uk]µ;B1(0)

=
|aijk (xk + ρkx)− aijk (xk)|

ρµk
·+ |Diju(xk)|

[D2uk]µ;B1(0)

≤ β|x|µ · 1

k
.

)

By letting k →∞ in (23),
ãijDijũ = 0 in Rn. (24)

Step 4: Now we have a solution ũ to the elliptic equation (24) for some constant ãij satisfying
(22), which recall states that

[D2ũ]µ;Rn ≤ 1, |D2ũ(ξ)−D2ũ(0)| ≥ δ/2.
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Recall from the maximum principle lectures, after an orthogonal change of coordinates we may
take (24) to have the form

n∑
i=1

λiDiiũ = 0 in Rn

for some constants λi > 0 and (21) is unchanged. Let

w(x1, x2, . . . , xn) = ũ(
√
λ1x1,

√
λ2x2, . . . ,

√
λnxn)

so that w is harmonic on Rn and by (21), [D2w]µ;Rn < ∞ and D2w is not constant on Rn. Since
w is a C2 harmonic function on Rn, w is smooth on Rn. Hence D2w is a harmonic function on
Rn such that its Hölder coefficient on Rn is finite and it is not constant on Rn, contradicting the
Liousville lemma (see below).

Lemma 3 (Liousville lemma). There is no non-constant harmonic function u on Rn with [u]µ;Rn <
∞.

Proof. Recall that if u is harmonic then each derivative Diu is also harmonic. Thus for every
y ∈ Rn and R > 0,

|Diu(y)| =
∣∣∣∣ 1

ωnRn

∫
BR(y)

Diu

∣∣∣∣ (by the mean value property)

=

∣∣∣∣ 1

ωnRn

∫
∂BR(y)

u(x)
xi
|x|
dx

∣∣∣∣ (by the divergence theorem)

≤ 1

ωnRn

∫
∂BR(y)

|u(x)|dx

≤ 1

ωnRn

∫
∂BR(y)

(|u(y)|+ |u(x)− u(y)|)dx

≤ 1

ωnRn

∫
∂BR(y)

(|u(y)|+ [u]µ;Rn|x− y|µdx (since [u]µ;Rn <∞)

≤ nR−1|u(y)|+ nRµ−1[u]µ;Rn ,

where ωn is the volume of the unit ball in Rn. By letting R → ∞ we obtain Diu(y) = 0 for all
y ∈ Rn and i = 1, 2, . . . , n, i.e. u is constant.

Theorem 1 (Interior Schauder estimates). Let µ ∈ (0, 1) and Ω′ ⊂⊂ Ω be bounded domains in
Rn. Suppose u ∈ C2,µ(Ω) ∩ C0(Ω) solves the uniformly elliptic equation

Lu = aijDiju+ biDiu+ cu = f in Ω,

where the coefficients aij, bi, c ∈ C0,µ(Ω) satisfy

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for x ∈ Ω, ξ ∈ Rn,

|aij|0,µ;Ω + |bi|0,µ;Ω + |c|0,µ;Ω ≤ β,

for some constants λ,Λ, β > 0 and f ∈ C0,µ(Ω). Then

|u|2,µ;Ω′ ≤ C (|u|0;Ω + |f |0,µ;Ω)

for some constant C = C(n, µ, λ,Λ, β,Ω′,Ω) ∈ (0,∞).
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Proof. Let d = dist(Ω′, ∂Ω). Given x ∈ Ω′, Bd(x) ⊂ Ω, so by the interior Schauder estimate
proved last time,

|u(x)|+ (d/2)|Du(x)|+ (d/2)2|D2u(x)|+ (d/2)2+µ[D2u]µ;Bd/2(x) ≤ |u|2;Bd/2(x)

≤ C
(
|u|0;Ω + d2|f |0,µ;Ω

)
(25)

for some constant C = C(n, µ, λ,Λ, β) ∈ (0,∞), giving us the required bounds on u, Du, and
D2u. Suppose x, y ∈ Ω with x 6= y. If |x− y| < d/2, then by (25),

(d/2)2+µ |D2u(x)−D2u(y)|
|x− y|µ

≤ (d/2)2+µ[D2u]µ;Bd(y) ≤ C
(
|u|0;Ω + d2|f |0,µ;Ω

)
.

If instead |x− y| ≥ d/2, by the bound on D2u in (25),

(d/2)2+µ |D2u(x)−D2u(y)|
|x− y|µ

≤ 2(d/2)2|D2u|0;Bd/2(x) ≤ 2C
(
|u|0;Ω + d2|f |0,µ;Ω

)
.
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